
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2021

Building Parallel Applications Using

Spatiotemporal Patterns

Mr. B P KolheM.E. – Student, Department of Computer Science Engineering,

Government College of Engineering, Aurangabad

Abstract: The exploration of design pattern concepts in the parallel programming domain is not something new. In fact,

parallel computing is becoming an integral part in several major application domains, for instance: space, medicine,

geological survey, cancer and genetic research, graphics and animation, image processing-to name a few. This paper

addresses detail study on spatial data partitioning strategy.

 Keyword: Design patterns, parallel computing, parallel programming, spatiotemporal pattern

I. INTRODUCTION

In software engineering, a design pattern is a general

repeatable solution to a commonly occurring problem in

software design. A design pattern isn't a finished design that

can be transformed directly into code. It is a description or

template for how to solve a problem that can be used in many

different situations. These patterns provide a set of general

solutions which are based on recurring designs used by

experts in the field. When engineers encounter a problem

developing a parallel application, they can look for a pattern

that provides insight and develops intuition for possible

solutions. With the advent of fast interconnecting networks

of workstations and PCs, it is now becoming increasingly

possible to develop high-performance parallel applications

using the combined computing powers of these networked -

resources, at no extra cost. A design pattern is implemented

as a reusable code Skelton for quick and reliable

development of parallel applications. Developing a program

that employee such complex parallel structure would requires

significant amount of time and effort.

This paper reviewed to support the framework for

parallelizing an application while considering throughput,

latency or both with detailed case study. This framework

pattern are called spatiotemporal portioning strategies

because they distinguish between parallelizing an

application‘s data or instructions and whether that

parallelization is done in time or space

Three step processes is used to select a partitioning strategy

given an application‘s performance goals.

Step- I: Defined spatiotemporal indices of an application‘s

data and instruction.

Step- II: Using decision tree for selecting initial strategy.
Step - III: (Optional) iteratively applying multiple strategies
if single partitioning strategy is fails or too complicated for
implementation

II. BASIC CONCEPT AND DEFINATION

The term program or application is used to refer to the

problem to be decomposed into concurrent parts. A process

is the basic unit of program execution, and a parallel

program is one that has multiple processes actively

performing computation at one time. Programs operate by

executing instructions to manipulate data. Both the data and

instructions of a program have spatial and temporal

components because programs execute over time while

reading and writing space (memory).

In order to partition the execution of a program, one must

first define the spatial and temporal dimensions of the

program‘s execution. Programs are parallelized to increase

their performance. The performance of a parallel program

can be further broken down into throughput, which measures

the rate of computation, and latency, which measures the

time taken to perform a component of the total computation.

Often, these values are reported in terms of inputs;

throughput is measured in inputs per time unit, while latency

is measured in terms of the average time taken to process an

individual input. Typically, a program is parallelized to

increase throughput, decrease latency, or both [1].
.

III. PARTITIONING STRATEGIES

In this section we are defining the four partitioning

strategies: spatial data partitioning (SDP), temporal data

partitioning (TDP), temporal instruction partitioning (TDP),

and spatial instruction partitioning (SIP).

The methodology for choosing a partitioning strategy

consists of several distinct steps. First, one defines the

spatiotemporal indices of the program‘s instructions and

data. Second, a decision tree is used to determine the best

strategy to meet the application‘s throughput and latency

goals. Third, if no single strategy appears to provide a good

solution one can iteratively apply multiple strategies to break

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2022

a complicated program into several parts that are

individually simpler to deal with. [1]

A. Spataial Data Partitioning

With the help of spatial data partitioning strategy, data are

divided among processes according to spatial data index.

Generally each process performs all assigned instruction.

Fig. 3.1 SDP

B. Temporal Data Partitioning

Using the temporal data partitioning strategy, data are
divided among processes according to temporal index.

Fig. 3.2 TDP

C. Spatial Instruction Partitioning

Using the spatial instruction partitioning strategy,

instructions are divided among processes according to

spatial instruction index.

Fig. 3.3 SIP

D. Temporal Instruction Partitioning

Using the temporal instruction partitioning strategy,

instructions are divided among processes according to

temporal data index.

Fig. 3.4 TIP

IV CASE STUDY

In this section present detailed case study showing how the
spatiotemporal partitioning strategies and the accompanying
selection methodology can guide the development of parallel
programs

Arsenic in Ground Water of the United State

In this case study we are using a dataset arsenic_may2000 of

U.S. Department of Geological Survey related to Arsenic in

Groundwater of the United States. This dataset is intended to

represent the potable ground-water resource. This dataset

therefore does not include thermal and saline water

(temperature greater than 50 degrees C or dissolved solids

greater than 3000 mg/L or specific conductance greater than

4000 uS/cm). In addition, this dataset includes only the

most recent arsenic analysis available for each well, and

only analyses performed by hydride generation or ICP/MS.

A. Background Information:

Arsenic is a naturally occurring trace element found in

rocks, soils, and the waters in contact with them. Arsenic has

long been recognized as a toxic element and is also

considered a human health concern because it can contribute

to skin, bladder, and other cancers. Arsenic concentrations

are measured in units of micrograms per liter (μg/L), which

is equivalent to parts per billion. This map layer was

compiled by the U.S. Geological Survey, National Water-

Quality Assessment Program (NAWQA), which is

responsible for developing long-term, consistent, and

comparable information on streams, ground water, and

aquatic ecosystems. This information supports national,

regional, State, and local water-management and policy

decisions that protect drinking water and other water

resources, as well as public health. NAWQA information on

arsenic in ground water is used by the U.S. Environmental

Protection Agency (USEPA) to help set national standards

for arsenic in drinking water, as mandated by the Safe

Drinking Water Act. In 2001, the USEPA lowered the

maximum level of arsenic permitted in drinking water from

50 μg/L to 10 μg/L .[11]

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2023

Fig. 4.1 Arsenic in groundwater of the United States [11]

B. Basic Dataset Element

STAID: USGS station identifier; based on latitude and

longitude (each well in the National Water Information

System has a unique USGS station identifier).

STATE: Two-letter postal code for the U.S. state in which

the sample was collected.

FIPS: Federal Information Processing Standard state and

county codes

LAT_DMS: Latitude of well, in degrees, minutes, and

seconds

LONG_DMS: Longitude of well, in degrees, minutes, and

seconds

WELLDPTH: Depth (below land surface) of finished well

SAMPDATE: Date water sample was collected

SAMPTIME: Time water sample was collected

AS_RMRK: Remark code qualifying the analytical result in

AS_CONC.

AS_CONC: Concentration of arsenic in sample, in

micrograms per liter (ug/L) as arsenic

C. Spatiotemporal Partioning Strategies

To apply the partitioning strategies, a program‘s temporal

and spatial indices must first be defined. The following

procedure determines the spatiotemporal indices of a

program‘s instructions and data to prepare for partitioning

1. Determine what constitutes an input to define the

temporal dimension of the program‘s data. The sequence of

inputs represents the temporal data index.

2. Determine the distinct components of an individual

input to define the spatial dimension of the Program‘s data.

These components represent the spatial data index.

3. Determine the distinct functions required to process

an input to define the spatial dimension of the program‘s

instructions. The distinct functions represent spatial

instruction indices.

4. Determine the partial ordering of function

execution required to process a single input. [1]

5. Fig. 4.2 Proposed system archetecture

Using the spatial data partitioning strategy, data are divided

among the processes according to spatial data index. To

implement SDP strategy on dataset arsenic_may2000.

Step I: First proposed system extract the arsenic_may2000

dataset with all key element in Fig. 4.3

Fig. 4.3 Extract Arsenic dataset

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2024

Step II : A single water sample is an input, so the sequence

of samples represent the temporal dimesnsion of the arsenic

dataset and each sample is composed of distinct element

STATEID with STATE element.

The spatial data partitioning strategy can be implemented

using either DataDecomposition or TaskDecomposition. To

implement this strategy with Data Decomposition, simply

assign each process a separate set of spatial data indices. To

implement the strategy with TaskDecomposition, each task

should be defined to execute all instruction indices on data

from a single spatial data index

To implement the SDP strategy with data decomposition in

the arsenic data, separate process work simultaneously on

distinct component for example to analysis well depth water

level in all state for this purpose two process contain two

separate set of spatial data indices one set contain all STATE

and another contain all WELLDEPTH in Fig. 4.4

Fig. 4.4 Data Decomposition

 Step III : With the help of Task Decomposition , each task

should be defined to execute all instruction on data from

spatial index.For example we are find the missing level of

in depth so that task can separate two spatial index STATE

and WELLDEPTH in Fig. 4.5

StepIV :Using the spatial instruction partitioning strategy ,

instructions are divided among processes according to

spatial instruction index. To implement SIP strategy on

dataset arsenic_may2000 based on the Longitude and

Longitude to find the SD between range in Fig. 4.6

StepV : Fig. 4.7 show the latency of the proposed system

parallelized with the SDP strategy. The figure clearly shows

how using SDP can improve latency for this system.

Fig. 4.5 Task Decomposition

Fig. 4.6 SIP

Fig. 4.7 Latency of Proposed system

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2025

V CONCLUSION

This paper presents a generic model for designing and

developing parallel applications, and is based on the idea of

spatiotemporal patterns. The model is an ideal candidate for

implementation parallel application using any four

mentioned strategy. Normally for parallel computing domain

expert application designer are required, but with the help of

this model parallel computing accessible to non expert

people.

VI ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to my guide

Prof. S. G. Shikalpure for their valuable and firm

suggestions, guidance, encouragement and constant support

throughout this work without which it would not be possible

to do this work. They took deep interest in checking the

minute details of the paper and guided me throughout the

same. He has been a constant source of inspiration. I also

feel a deep sense of gratitude to Prof. V. P. Kshirsagar, HOD

of Computer Science and Engineering department for their

continuous cooperation, guidance and encouragement. I am

also sincerely thankful to Dr.P.S.Advani, Principal,

Government College of Engineering, Aurangabad for being

source of motivation for this work.

REFERENCES

[1] H. Hoffmann, A. Agarwal, S. Devadas, Selecting Spatiotemporal

Patterns for Development of Parallel Applications. IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 10,
OCTOBER 2012.

[2] M. Snir, ―Parallel Programming Patterns,‖ http://www.cs.uiuc.
edu/homes/snir/PPP/, 2012.

[3] H. Hoffmann, A. Agarwal, and S. Devadas, ―Partitioning Strategies:
Spatiotemporal Patterns of Program Decomposition,‖ Proc. 21st Int‘l Conf.

Parallel and Distributed Computing and Systems, 2009

[4] x264, http://www.videolan.org/x264.html, 2011

[5] Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders,

―Patterns for Parallel Application Programs‖

[6] S Siu, M Simone, A Singh, ―Design Pattern for parallel programming‖

[7] C. Bienia, S. Kumar,J Singh,Kai Li, ―The PARSEC Benchmark Suite:
Characterization and Architectural Implications‖

[8] T. Purcell, I. Buck, W. Mark, P. Hanrahan, ―Ray Tracing on

Programmable Graphics Hardware‖

[9] P. Christensen, J Fong, D. Laur, D. Batali, ―Ray Tracing for the

Movie ‗Cars‘‖

[10] ―Supra-Linear Packet Processing Performance with Intel Multi-Core

Processors,‖ technical report, Intel, 2006

[11] ―National water-quality assesment (NAWQA) program , U.S.

Department of the Interior , U.S. Geological Survey ‖

[12] Martin Erwig ,―Toward Spatiotemporal Patterns‖, School of Electrical
Engineering and Computer Science, Oregon State University,

Corvallis, Oregon 97331, USA

[13] Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders,

―Patterns for Parallel Application Programs‖, University of Florida

[14] R. van de Geijn,Using PLAPACK—Parallel Linear Algebra Package.

MIT Press, 1997.

BIOGRAPHY

Babasaheb P. Kolhe received his B.E.

degree in Information Technology from

P.E.S. College of Engineering,

Aurangabad, India, in 2006 and pursuing

M.E. degree in Computer Science and

engineering from Government College

of engineering, Aurangabad, India. His

research interest includes Parallel

application and Spatial Data Processing.

http://www.cs.uiuc/

